Automatic Feature Detection Using Pattern Projection for Person Identification
نویسندگان
چکیده
In this paper an efficient algorithm is proposed for person identification based on the analysis of 2D images of a designed mask projected onto the person's face in a cooperative environment. The cooperative environment is essential for the accomplishment of the images under a certain condition. The importance of the designed mask is for avoiding the complexity of feature selection from the face image. The mask contains a number of designed patterns with single center, minor and major axis. Due to the structure differences of human faces in 3D, 2D images of the proje~ted mask contain different information about the shape of an individual face. Each boundary of a pattern on the original mask is considered as an individual object's shape on the image plane. For an image plane each shape is matched with the same number of pattern in the image. Simulations are conducted with real data to confirm the effectiveness of our method.
منابع مشابه
On the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملA New Approach towards Precise Planar Feature Characterization Using Image Analysis of FMI Image: Case Study of Gachsaran Oil Field Well No. 245, South West of Iran
Formation micro imager (FMI) can directly reflect changes of wall stratums and rock structures. Conventionally, FMI images mainly are analyzed with manual processing, which is extremely inefficient and incurs a heavy workload for experts. Iranian reservoirs are mainly carbonate reservoirs, in which the fractures have an important effect on permeability and petroleum production. In this paper, a...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملA new technique for bearing fault detection in the time-frequency domain
This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, res...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کامل